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•  why	study	neuroscience?		

•  how	did	I	get	here?		

•  what	is	a	brain	computer	interface	(BCI)?	

– how	do	talk	to	(and	listen)	to	the	brain?	

•  my	research…	
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why	study	neuroscience?	

•  ironman	

•  impossible	problems	

•  help	people	
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Stroke	 Paralysis	 Amputa5on		

6.6	million	paJents	have	

suffered	a	stroke		

(610,000	1st	Jme/year)	[3]	

	

Post	stroke:	9%	increase	in	

disability,	11%	risk	of	

insJtuJonalism	

282,000	paJents	live	with	

a	spinal	cord	injury	

(17,000/year)	[1]	

1.9	million	amputees			

(185,000/year)	[2]	

	

ProstheJcs:	27-59%	use	of	

upper	limb,	49-95%	of	lower	

limb	
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first	lego	league	
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acJve	prostheJcs	
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		MIT	Media	Lab	(2009)	

					Dr.	Hugh	Herr	
	

								-	designed	two						

							motor	controller	PCBs					

				for	an	acJve	knee	

prostheJc	device	[5]	
	

-	helped	test	a	parallel	

leaf	spring	exoskeleton	to	

increase	metabolic	

efficiency	of	walking	[6]	

	

12	

Block	Diagram	of	Binning	MTEO	Algorithm
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Cornell	University	(2011)	–	Dr.	Alyosha	Molnar		
	

developed	mTEO,	mulJ-resoluJon		

Teager	Energy	Operator	(TEO),	for		

neural	spike	detecJon	in	0db	SNR		

condiJons	
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Univ.	of	California,	Irvine	(2012)	

			Dr.	David	Reinkensmeyer	
	

-	characterized	psycho-physical	

interacJons	of	paJents	with	

therapeuJc	hapJc	robots	
	

-	wrote	an	IRB	protocol	
	

-	error	magnificaJon	vs	error	

minimizaJon	in	hapJc	learning	

environments	[7]	
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how	did	i	get	here?	

•  college	

–  b.s.	in	electrical	engineering	at	cornell	university	

•  acJve	prostheJcs		 	(m.i.t.		media	labs)	

•  spike	detecJon		 	(cornell	university)	

•  therapeuJc	hapJc	roboJcs		 	(univ.	of	california	irvine)	

•  graduate	school	

– m.s.	in	electrical	and	computer	engineering	

•  spike	sorJng	 	(univ.	of	pibsburgh)	

–  ph.d.	in	electrical	engineering		

•  sensory	feedback	sJmulaJon	 	(uw)	
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brain	=	stadium	
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brain	=	stadium	
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brain	=	stadium	
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Aim	3:	Electrode	Interfaces	

19	

μECoG	

Kellis	SS,	House	PA,	Thomson	KE,	Brown	R,	Greger	B.	Human	neocorJcal	electrical	acJvity	recorded	on	nonpenetraJng	microwire	arrays:	applicability	for	

neuroprostheses.	Neurosurgical	focus.	2009;27(1):E9.	doi:10.3171/2009.4.FOCUS0974.	

ICMS	

ECoG	

20	S.	Lefort,	C.	Tomm,	J.C.F.	Sarria	and	C.C.H.	Petersen	(2009)	The	excitatory	neuronal	network	of	the	c2	barrel	column	in	mouse	primary	somatosensory	cortex.	neuron	61:	

301-316..	Neuron	61,	pp.	301–316.		

•  Larger	currents	are	
needed	to	penetrate	
corJcal	layers	

•  Possible	acJvaJon	
of	descending	tracts	

•  Diffusion	likely	to	
occur,	affecJng	
temporal	and	spaJal	
specificity	

AcJvaJon	pathway	for		

µECoG	and	ICMS	
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Snippet Threshold

Raw	Waveform

21	

spike	sorJng	

Max-Planck-InsJtute	

Snippets	 Snippets	-	PCA	

15	µV	

100	µS	

Snippet Threshold

Raw	Waveform
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Max-Planck-InsJtute	

Snippets	 Snippets	-	PCA	
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Somatosensory	

Cortex	

24	

[2]	Ali,	Farzana	2015.	hbp://www.slideshare.net/FarzanaAli6/lecture-12-somatosensory-system-and-nocicepJon,	Slide:	21	

record	/sJmulaJon	neural				

					acJvity	from:	
	

– Area	1							

– Area	2							

– Area	3b				
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M1	
Motor	Output	
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Motor	Output	
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+	

S1	 M1	

Tac5le	and	Propriocep5ve	Feedback	

Delay:		

20	-	50	ms	

[1]	Efron,	Robert.	"The	minimum	duraJon	of	a	percepJon.“	Neuropsychologia8.1	(1970):	57-63.		

	

Motor	Output	

28	

+	

V1	

M1	

Visual	Feedback	

Delay:	120	-	240	ms	

S1	

Delay:		

20	-	50	ms	

[1]	Efron,	Robert.	"The	minimum	duraJon	of	a	percepJon.“	Neuropsychologia8.1	(1970):	57-63.		

[2]	Kandel,	E.	R.,	Schwartz,	J.	H.	1.,	&	Jessell,	T.	M.	(2015).	Principles	of	neural	science	(5th	ed.).	New	York:	McGraw-Hill,	Health	Professions	Division.	
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Motor	Output	
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+	

V1	

M1	

Delay:	120	-	240	ms	

S1	

30	
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Classic	Feedback	System	

Controller	

(The	Brain)	

System	

(Prosthe5c)	

Sensor		

+	Time	Delay	Δt	

System	

Output	

-	

+	

Measured		

System	Output	

System	

Input	Reference	
Measured		

Error	

31	
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+	

V1	

M1	

Delay:	120	-	240	ms	

S1	

Re-anima5on	

Robo5c	Limb	

BCI	
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+	

V1	

M1	S1	

BCI	

?
Delay:	20	milliseconds	

“Ar5ficial”	Sensory	S5mula5on	

BBCI	

34	

Pulse	Width	

Pulse	Amplitude	
Electrical	S5mula5on	

•  Constant	Current	

•  Bi-Phasic	

•  Charge	Balanced	

•  Bi-polar	or	Mono-polar	
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S5mula5on	Frequency	

Inter-Train	Interval	
Number	of	Pulses	

Pulse	Width	

Pulse	Amplitude	
Electrical	S5mula5on	

•  Constant	Current	

•  Bi-Phasic	

•  Charge	Balanced	

•  Bi-polar	or	Mono-polar	
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X		[⁞]			=	
Transforma5on	 Intensity	S5mula5on	Train	
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37	

X		[⁞]			=	
Transforma5on	 Intensity	S5mula5on	Train	

Frequency	

Thomson	EE,	Carra	R,	Nicolelis	MA	(2013).	Perceiving	invisible	light	through	a	somatosensory	corJcal	prosthesis.	Nat	Commun.	2013;4:1482.	doi:	10.1038/ncomms2497		

Aim	1:	ACRoBaT		
(Automated	Center-out	Rodent	Behavioral	Trainer)	

38	

“Invisible	Ball”

EA
B C D

Stimulate

Neural

Populations
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Aim	1:	ACRoBaT		
(Automated	Center-out	Rodent	Behavioral	Trainer)	
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“Invisible	Ball”

EA
B C D

Stimulate

Neural

Populations

Perceptual	Thresholds	

Aim	1:	ACRoBaT		
(Automated	Center-out	Rodent	Behavioral	Trainer)	
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“Invisible	Ball”

EA
B C D

Stimulate

Neural

Populations

Measure	Discriminability	
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Aim	1:	ACRoBaT		
(Automated	Center-out	Rodent	Behavioral	Trainer)	

•  Modified	Center-out	Task	

•  Complex	Behavioral	Task	

•  High	Throughput	Training	

–  23	Training	Levels	(4	Phases)	
41	

“Invisible	Ball”

EA
B C D

Stimulate

Neural

Populations

Surgical	Methods	

42	

ICMS	

•  Intra-CorJcal	Micro-
SJmulaJon	(ICMS)	

–  16	Channel	

– Hand	Built	

–  Tungsten	micro-wire	

–  30	μm	diameter	

–  100	–	500	kOhms	

•  Implanted	in	sensory-motor	cortex	

– TargeJng	layer	5,	depth	1.5mm	
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Sensory	Evoked	PotenJals	
•  Validate	LocaJon	of	the	Implant	

•  Evoke	Sensory	AcJvity	via	Muscle	Twitches	

•  Chose	Electrode	Sites	with	some	acJvity,	but	
avoided	the	maximum	responding	site	

43	 
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Just	NoJceable	Difference	(JND)	
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Encoded	Intensity	
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Just	NoJceable	Difference	(JND)	
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Encoded	Intensity	
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Encoded	Intensity	
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Results	
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A	

B	
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failure	

49	

A	

Z	

the	end	

•  engineering	=	problem	solving		

•  learn	how	to	solve	many	different	problems	

•  apply	those	tools,	many	different	places	

•  have	a	lot	of	fun	
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